34 research outputs found

    Effects of intersegmental transfers on target location by proteins

    Full text link
    We study a model for a protein searching for a target, using facilitated diffusion, on a DNA molecule confined in a finite volume. The model includes three distinct pathways for facilitated diffusion: (a) sliding - in which the protein diffuses along the contour of the DNA (b) jumping - where the protein travels between two sites along the DNA by three-dimensional diffusion, and finally (c) intersegmental transfer - which allows the protein to move from one site to another by transiently binding both at the same time. The typical search time is calculated using scaling arguments which are verified numerically. Our results suggest that the inclusion of intersegmental transfer (i) decreases the search time considerably (ii) makes the search time much more robust to variations in the parameters of the model and (iii) that the optimal search time occurs in a regime very different than that found for models which ignore intersegmental transfers. The behavior we find is rich and shows surprising dependencies, for example, on the DNA length.Comment: 40 pages, 14 figure

    Classes of fast and specific search mechanisms for proteins on DNA

    Full text link
    Problems of search and recognition appear over different scales in biological systems. In this review we focus on the challenges posed by interactions between proteins, in particular transcription factors, and DNA and possible mechanisms which allow for a fast and selective target location. Initially we argue that DNA-binding proteins can be classified, broadly, into three distinct classes which we illustrate using experimental data. Each class calls for a different search process and we discuss the possible application of different search mechanisms proposed over the years to each class. The main thrust of this review is a new mechanism which is based on barrier discrimination. We introduce the model and analyze in detail its consequences. It is shown that this mechanism applies to all classes of transcription factors and can lead to a fast and specific search. Moreover, it is shown that the mechanism has interesting transient features which allow for stability at the target despite rapid binding and unbinding of the transcription factor from the target.Comment: 65 pages, 23 figure

    General Stability Analysis of Synchronized Dynamics in Coupled Systems

    Full text link
    We consider the stability of synchronized states (including equilibrium point, periodic orbit or chaotic attractor) in arbitrarily coupled dynamical systems (maps or ordinary differential equations). We develop a general approach, based on the master stability function and Gershgorin disc theory, to yield constraints on the coupling strengths to ensure the stability of synchronized dynamics. Systems with specific coupling schemes are used as examples to illustrate our general method.Comment: 8 pages, 1 figur

    Ecosystem resilience despite large-scale altered hydroclimatic conditions

    Full text link
    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE e: Above-ground net primary production/ evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE e in drier years that increased significantly with drought to a maximum WUE e across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought - that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE e may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands. © 2013 Macmillan Publishers Limited. All rights reserved
    corecore